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NASA’s Stake in Quantum Computing

NASA constantly confronting
massively challenging
computational problems

 Computational capacity limits <
mission scope and aims o

NASA’s Pleiades

One of the top 25 fastest
supercomputers in the
world

Determine the potential for
quantum computation to enable
more ambitious and safer NASA
missions in the future
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Quantum Computing in one slide

Pool of quantum properties The power of quantum computation comes from
T — encoding information in a non-classical way

Quantum entanglement | QUantum computers take advantage of quantum
effects not available classically

Quantum tunneling

These effects can provide more efficient

computation and higher levels of security than
Is available classically

Quantum sampling

Quantum measurement

Non-commutative quantum operators What Shor’s factoring algorithm can compute in days,
would take a supercomputer longer than the age of
Quantum population transfer the universe
Quantum many-body delocalization Breaks all public key encryption in standard use

Quantum no cloning theorem

The art of quantum algorithm design is figuring
Quantum adiabatic theorem out how to harness peculiarly quantum

o e——— properties for computational purposes
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Outline of talk

Part I: High-level discussion of quantum computing
Part Il: Basic concepts in quantum computing

Part lll: NASA QuAIL Research Overview
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Birth of quantum computing

A FETNAAN
. . al 5 on
» Feynman and Manin recognized | &5céﬂp‘j‘§,ﬂlon;

in the early 1980s that certain A PR e
gquantum phenomena could not | S\
be simulated efficiently by a
computer

- Phenomena related to quantum
entanglement; Bell's inequality

- Reason materials are hard to simulate at
the quantum level

e Perhaps these quantum
phenomena could be used to
speed up more general
computation?
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* Babbage’s analytical engine was g wlummmmﬂ
a classical mechanical machine Bl ([ Em A
* Turing machines f_.,.., s | | (155
- The abstraction that underlies . . 1 e

complexity theory and universal
computing machines Babbage engine

- Firmly rooted in classical mechanics (Computer History
- Described in classical mechanical terms Museum)

e Abstraction allowed us ignore how classical computers are
implemented physically

 When we program we don’t think about the fundamental physics

e How do different models of physics affect how quickly
we can compute
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What a quantum computer is not

Just because a computer uses quantum effects, does not
mean it is a quantum computer
All the computers in this building make use of quantum effects
The fundamental unit of computation, the bit, and the algorithms we design for
computers did not change when quantum effects were used
A quantum computer has a fundamentally different way
of encoding and processing information
Quantum computers are quantum information processing devices
They process qubits instead of bits
They use quantum operations instead of logic gates

Also, just because a piece of hardware has a certain
number of qubits, it isn’t necessarily a quantum
computer

A set of light switches, even a very large set, is not a classical computer
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Certainty and randomness in quantum
computation

* Any computation a classical computer can do, and
quantum computer can do with roughly the same
efficiency

- With the same probability of the outcome
- if the classical computation is non-probabilistic, so is the quantum one

Like classical algorithms, some quantum algorithms
are inherently probabilistic and others are not

- First quantum algorithms were not probabilistic

- E.g. Deutsch-Jozsa algorithm solves problem with certainty that classical
algorithms, of equivalent efficiency, could solve only with high probability

- Shor’s algorithms are probabilistic
- Grover’s is not intrinsically probabilistic

- initial search algorithm was probabilistic, but
- slight variants, which preserve the speed up, are non-probabilistic
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Current status of quantum algorithms

Unknown quantum advantage
for everything else

Quantum
comp::l:!ng can do Status of classical algorithms
everytning a Provable bounds hard to obtain
classical —  Analysis is just too difficult A handful of
computer can do . Efg’élcelzra:?cal algorithm not known for most proven
and e Empirical evaluation required limitations
Provable . gggggghiivelopment of classical heuristic on quantum
quantum = ,I’E-\nalyzed empirically: ran and see what happens .
—  E.g. SAT, pl , machine | , etc.
advantage known cogmpetitipoﬂgnmg machine learning, etc Comput"‘]g
for a few dozen
quantum [ Nisera sunports unprecedented mean:
algorithms algorithms
— Quantum heuristics come into their own

Conjecture: Quantum Heuristics will significantly broaden

applications of quantum computing
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Quantum hardware

General Purpose: Superconducting processors
: P - Google, IBM, Rigetti, Intel, ...
Universal quantum processors
Trapped ion processors

- lonQ, Honeywel, ...

Other approaches

- Optical

- Electron spins in silicon

- Topological, anyon based quantum computing

Special Purpose: Number of qubits alone is not a good measure
E.g. Quantum Intermediate-] - Analogy: billions of switches do not a classical computer
annealers Scale make
y ‘ Quantum
(NISQ)
devices

Other key factors
- precision, speed, and generality of the control
- particularly operations involving multiple qubits
- how long quantum coherence can be maintained
- stability over time
- speed with which processors can be calibrated
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Quantum computing has entered the NISQ Era

Quantum supremacy has been achieved!

 Perform computations not possible
on even the largest supercomputers

Article
Quantum supremacy using a programmable
superconducting processor

Cover article, , =
N atur e, 24 O ct B e e o
2019

Google, NASA, ORNL collaboration

https://www.nature.com/articles/s41586-
019-1666-5

https://www.nasa.gov/feature/ames/quantu
m-supremacy

.. but not useful quantum supremacy.

*  Currently too small to be useful for solving
practical problems

e Early application to certified random number
generation, but other applications require larger,
more capable devices

Uses of these still limited, quantum devices?

(1) Unprecedented opportunity to explore and
evaluate algorithms, both quantum and hybrid
quantum-classical heuristic algorithms

(2) Investigate quantum mechanisms that may be
harnessed for computational purposes

Insights gained feed into next generation
* quantum algorithms
e guantum hardware

Early target: Optimization; Sampling & Machine
Learning; simulation of quantum systems
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Photon Polarization

Polarization state of a photon

@ can be represented as a 2-dimensional vector of unit length

Taking horizontal |—) and vertical [1) polarizations as a basis, an arbitrary
polarization can be expressed as a superposition

) = alt) + b|=)

with |a|? + b2 =1

(Allowing a and b to be complex numbers enables this formalism to
describe circular polarization as well)

|v) is Dirac’s notation for vectors. Means the same thing as v or v, with v
being the label for the vector

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 11/18



Measurement of polarization

Polarization filters are quantum measuring devices

Quantum measurements always occur w.r.t. an orthogonal subspace
decomposition associated with the measuring device

For a horizontal polarization filter, the basis in which it measures is |—),
together with its perpendicular [1)

A photon with polarization a|t) + b|—) is measured by a horizontal filter

as |1) (absorbed) with probability |a|?, and
|—) (passed) with probability |b|?

Any photon that has passed through the filter now has polarization |—).

Polarization filters at other angles work in a similar way

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 12/18



Quantum bits, or qubits

Think polarization states of a photon!
Any 2-dimensional quantum system can be viewed as the fundamental unit
of quantum computation, a quantum bit or qubit.

Qubit state space is a 2-dimensional complex vector space

A computational basis is chosen, denoted |0) and |1), and used to encode
classical bit values 0 and 1

Possible qubit values a|0) + b|1), for complex a, b with |a|? + |b|? = 1.
Unlike classical bits, qubits can be in superposition states such as

5(10) + (1)) or 5(/0) — i[1))

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 13/18



How State Spaces Combine

Let X be a vector space with basis {|a1),...,|a,)} and Y be a vector
space with basis {|51),...,|Bm)}

Classical state spaces combine via Quantum state spaces combine via

the Cartesian product the tensor product
X x Y has basis X ® Y has basis
{|051>, ey |Oén>, |B1>a ey |ﬂm>} {|a1> @ ‘ﬂ1>7 |a1> ® ‘ﬂ2>7 L) |a"> ® |ﬂm>}
dim(X xY) = dim(X)+dim(Y) dim(X®Y) = dim(X)*dim(Y)
n+m = nxm

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 15/18



Entangled states

Entangled states cannot be written as tensor product of independent qubits
Example: An EPR pair (\00> +[11))

(a0|0) + bo|1)) ® (a1|0) + b1]1))
= apa1|00) + aphy|01) + b031‘10> + bob1|11)
apa1|00) + 0[01) 4 0]10) + bob1|11)

1
ﬁ(|00> +11))

T

@ Measurement of the first qubit yields either |0) or |1)
@ Measurement changes state to either |00) or |11)

@ Measurement of second qubit gives same result as first

Similar results when measuring in other bases

NASA Ames and LANL Introduction to Quantum Computing 11-Nov-2018 17 /18
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0 applications Planning and scheduling Robust networks

& . . . .
e Fault Diagnosis Machine Learning
Material science simulations

QC programming Programming quantum computers

Novel classical solvers Quantum algorithm design

Mapping, parameter setting, error mitigation
Hybrid quantum-classical approaches

PhySiCS Insights Compiling quantum algorithms to hardware

Simylgtigpripgls / Aalyical methods  QC > state-of-the-art classical solvers

NS

Physics insights into quantum algorithm and
quantum hardware design
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Quantum Optimization Algorithms: AQO, QA, QAOA

Common elements: Given cost function C(z),

 Phase separation operator based on the cost function,

Usually based on Hp = —C(z)|z){z|, often including additional “penalty
terms” to enforce constraints

« Driver/Mixing operator

Most frequently Hy = Y X;, though we will shortly see other mixers
J

AQO QA QAOA
: « Alternate
 Evolution under  Evolution under application of Hp
H(t) = a(t)Hp + b(t)Hy H(t) = a(t)Hp + b(t)Hy, and Hy
* For p alterations, the
’ SIOW_Iy enoughto Many quick runs, parameters are 2p

subspace SElTaE Y1u.B1 Ve, By
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QAOA

Based on the Quantum Approximate
Optimization Algorithm

A gate model heuristic due to Farhi et al.
* |terates between two Hamiltonians, p
times, applied for times B; and y;
— Phase separation (encodes cost
function)
— Mixing
Early results by Farhi and co-authors
e p—> oo fromAQO
— Converges to optimum for p - oo
e p=1:fromIQP circuits

— Provably hard to sample output
efficiently classically (up to standard
complexity theory conjectures)

— Beat existing classical approximation
ratio on MaxE3Lin2 only to inspire a
better classical algorithm

81 1 3ol 1331
Quantum Alternating Operator Ansatz,
generalizing Farhi et al., QAOA

- More general mixing operators

- Inspired by compilation concerns, thus
enabling earlier evaluation on nearer-term
hardware

- Incorporates hard constraints into mixer
instead of as a penalty term

Algorithm explores only feasible subspace,
often exponentially smaller, so more
efficient search

Wang, Rubin, Dominy, Rieffel. XY mixer for QAOA on
graph coloring problems. (To appear)

We have mapped many optimization
problems to the QAOA formalism

S. Hadfield et al., From the Quantum Approximate Optimization Algorithm to a
Quantum Alternating Operator Ansatz, Algorithms 12 (2), 34 2019
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Numerical results: approximation ratio for 3-coloring a triangle
(Left) QAOA with std X-mixer. (Right) QAOA with XY-mixer

Parameter setting

New algorithm for Grover’s problem

- QAOA circuit O( VN) query complexity
- Trotterizing Roland-Cerf loses O( VN) g.c.

- Demonstrates utility of periodic
parameters

- Coherent state analysis

Confirmed advantage of mixers

Jiang, Rieffel, Wang, Near-optimal quantum circuit for Grover's unstructured
search using a transverse field. PRA (2017)

that maintain evolution within
feasible subspace

Analysis of QAOA on ring

- Mapping to Jordan-Wigner

- Explains parameter symmetries

- Provides orders of magnitude more efficient
numerical investigation

* Exponentially smaller subspace,
but still exponentially large
e Ratio shrinks exponentially with n:
PY _ dim(era) . K" . (i n
dim(H) 27+ \2s

Zhihui Wang, Nicholas C. Rubin, Jason M. Dominy, Eleanor G. Rieffel,
XY-mixers: analytical and numerical results for QAOA, arXiv:1904.09314

Wang, Hadfield, Jiang, Rieffel. QAOA for MaxCut: A Fermionic View. PRA
(2018)
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Example investigations of quantum mechanisms

Harnessing quantum MBDL
for quantum computation

Hybrid opt. alg.: Quantum band tunneling
combined with greedy descent

The Power of Pausing

Pausing at good time in anneal increases
performance by orders of magnitude

0 0.2 0.4 0.6 0.8 1

- Obtain square-root speed up in random
energy model

- Totally different mechanism than Grover

Key concept: Band
Tunneling induced by
quantum many-body
delocalization (MBDL).
Population transfer
occurs within a network
of resonances

Correct model of annealing required. |

Pause effective where thermalization slows
(rather than at minimum gap)

Band
Tunneljng

Collaboration: lllustrates effective feeding
of information into quantum hardware
design from users and theorists

Greedy descent

Collaboration with Google

K. Kechedzhi et al., Efficient population transfer via non-ergodic extended
states in quantum spin glass, arXiv:1807.04792

V. Smelyanskiy et al., Non-ergodic delocalized states for efficient population
transfer within a narrow band of the energy landscape, arXiv:1802.09542

J. Marshall, D. Venturelli, I. Hen, E. Rieffel, The power of pausing: advancing
understanding of thermalization in experimental quantum annealers,
accepted Phys Rev Applied, 2019
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Physics insights into quantum algorithm and
quantum hardware design
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Future of air traffic

— Higher vehicle density Challenge: assure
— Heterogeneous vehicles communication
— Mixed equipage availability

— Greater autonomy

UAV 2

Surrogate problem: minimum weighted spanning tree with degree constraints
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Pause shift for degree bounded spanning trees

Robust communications networks
- assuring communication availability

- essential for airspace with increasing vehicle density
and diversity including small Unmanned Aerial Systems
(sUAS)

surrogate problem: minimum degree-bounded spanning
tree within a communications graph

Demonstrated effectiveness of an annealing pause on
these instances

- confirmed pause on embedded instances
demonstrated,

- confirmed theory that pause location shift earlier in
anneal with increasing ferromagnetic coupling

Effectiveness of partial gauge transformation for hardware
with asymmetric parameter ranges

N =5, tapneal = 14s, num_read =10, 000,
num_repetitions = 5, 6 instances, 100 gauges

1072

0.20 025 030 035 040 045 050

Sp

Shift in the best pause location with increasing J;
Probability of success (y-axis) pause location (x-axis)

N =5, tanneas = 14s, num_read =10, 000,
num_repetitions =5, 117 problem instances

Median No Pause, | ferro=-1.6
No Pause, ) ferro=-1.6

@ Median Pruccess. Jero = — 1.6

A~ 100 Gauge, Median Pruces, Jroro= — 1.6

020 025 030 035 040 045 050
Sp

Effect of 100 partial gauges on Pgygcess With J; = -1.6
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Simulating quantum systems

Quantum Simulation is one
of the important applications
we expect to run on quantum
computers.

Elucidating Reaction Mechanisms on Quantum Computers

Markus Reiher,! Nathan Wiebe,2 Krysta M. Svore,?2 Dave Wecker,? and Matthias Troyer® 2:4

SRl o g BNV
e

FeMoco

FIG. 1. X-ray crystal structure 4WES [21] of the nitrogenase MoFe protein from Clostridium pasteurianum taken from the
protein data base (left; the backbone is colored in green and hydrogen atoms are not shown), the close protein environment of
the FeMoco (center), and the structural model of FeMoco considered in this work (right; C in gray, O in red, H in white, S in
vellow, N in blue, Fe in brown, and Mo in cyan).
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Quantum Simulation is one
of the important applications
we expect to run on quantum
computers.

FIG. 1. X-ray crystal structure 4WES [21] of the nitrogenase MoFe protein from Clostridium pasteurianum taken from the
protein data base (left; the backbone is colored in green and hydrogen atoms are not shown), the close protein environment of

the FeMoco (center), and the structural model of FeMoco considered in this work (right; C in gray, O in red, H in white, S in
vellow, N in blue, Fe in brown, and Mo in cyan).

There are two popular algorithms that have been suggested for quantum simulation:

1) Variational Quantum Eigensolver (similar to variational Monte Carlo)
2) Phase Estimation (An algorithm based on time evolution)

Hardware-efficient Variational Quantum Eigensolver for Small Molecules and
Quantum Magnets

Energy (Hartree)
S
nergy (Hartree)

¥

Gast Abhinav Kandala,” Antonio Mezzacapo,” Kristan Temme,

Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta

IBM T.J. Watson Research Center, Yorktoun Heights, NY 10598, USA
(Dated: October 16, 2017)

1 2 3 4
Interatomic distance (Angstrom)

1 3 4 1 2 3 4
Interatomic distance (Angstrom) Interatomic distance (Angstrom)
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The need for high fidelity wave functions

L
by = e | Dy
Good wave functions are needed for virtually all ‘Um) Z € ‘ £>
guantum algorithms. High overlap with ground =

states needed for phase estimation. Even higher The full wavefunction has exponential

needed for VQE, although optimization is possible number of degrees of freedom.
with a quantum computer.
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The need for high fidelity wave functions

Good wave functions are needed for virtually all
quantum algorithms. High overlap with ground
states needed for phase estimation. Even higher
needed for VQE.

L
‘@in) — Zaf ‘Dt’)

The full wavefunction has exponential
number of degrees of freedom.

Overlap/Fidelities for 55 molecules

What are good algorithms
for generating wave
functions (created classically)
on quantum computers?

[0 DZ @ C/DZ W CVDZ-rot

.0 ———

o
©
@

o
©
o

G2 Set of 55 molecules. Includes
(molecules consisting of C,N,H,SI,0).

HF Overlap

o
©
vl

Hartree-Fock fidelities ploted with different
approximations for the molecular
Hamiltonian.

0.

©

0

lo ‘o
Q,eb\xcx\&\ o

S or & O‘oé’d’*(\@o RORCES (,‘\Q\O\?%Q‘(/\/ SEPLIL o PR L FP




v

A
SR
—-

N A ; National Aeronautics and < ; ‘ (
et i Space Administration . .9 , '/ ) >
.‘ > ¥ = . l ‘ - ) 3 y "l g
\ 2 =/ .""‘H !

Discovery Innovations Solutions *

Real Material Simulations

Various mappings can provide approximate
Hamiltonians suitable for simulation on near term

First quantized approaches for quantum
hardware.

computers have recently been developed

and are promising.

P 8 Resource estimates for both exact and
approximate forms demonstrate that as quantum
computing power increases, so will simulation

accuracy.

Many potential NASA applications include
catalysis, battery materials, high temperature
superconductivity, magnetic materials and more..

Recent advances have shown that a

H HgBa,CuOy,; YBa,CuOg.; La,,Sr,Cu0, TI,Ba,CuOg,;
log(N) number of qubits can be used to ooy (veoo) Usco ©mzaony
simulate N plane waves cu cu o e

o ° 0
v La,Sr
Ba
5A Cube 10A Cube 15A Cube Ba
Bare Coulomb Bare Coulomb Bare Coulomb

El ‘ USPP USPP

;E, ’ NCPP

UT’S : L2V, PAW

w

‘Number of Planewaves Number of Planewaves

Neven Barisic et al. PNAS 2013

Figure 2. Planewave convergence of the hydrogen atom as calculated with planewave DFT codes. USPP are ultrasoft, NCPP is norm conserv-
ing, PAW are projected augment planewaves and Bare Coulomb is without pseudopotentials. The 4 decades labeled on the x-axis are 1000,
10,000, 100,000 and 1 million planewaves going from left to right.
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Quantum machine learning

Quantum-assisted associative Optimizing quantum heuristics
adversarial network with meta-learning
D-Wave2000Q  Latent Space Convolutional  Generated g
H S 7'?"[\ 7 2 < <8 Learning to learn to
B |y () optimize variational
' H d quantum algorithms
:I_L'E with machine

learning

Better performance of

Fake /Real Labels Featrespice roe oo meta-learner
(optimizer) than

closest comparable

Discriminator

Sealab competitor

calable quantum-

assisted GAN Tested (L'BFGS)

demonstrated on

large Cciontl/nuous- M fi | luti . .
valued color -

datasets (CIFAR ore ngar optimal solutions In a NoIsy
Bedrooms) environment

Max Wilson, Rachel Stromswold, Filip Wudarski, Stuart Hadfield, Norm
Max Wilson, Tad Hogg & Eleanor Rieffel, Quantum-assisted associative M. Tu.bman, Eleanor Rieffel, Optimizing quantum heuristics with meta-
adversarial network, arXiv:1904.10573 learning, arXiv:1908.03185
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Compiling quantum algorithms to realistic hardware

Compilation of algorithms to a NISQ Collaboration with
processor requires

« Decomposition into native gates
«  Qubit routing

- Domain experts at NASA, utilizing state of
the art temporal planners

- Rigetti, Google, and IBM hardware

Qubit routing moves qubit states to constraints
locations where desired gates can be Currently extending beyond superconducting
implemented . .. qubit devices, e.g. ion-trap quantum
- insert SWAP operations to handle limited processors
connectivity

Pioneered temporal planning for compilation Proven bounds on compilation, application to:
to NISQ devices . QAOA

> Ll e makespan Quantum simulation of Fermionic systems
« combined temporal planning with y

conStralned programmlng D Venturelli, M Do, E Rieffel, J Frank., Compiling quantum circuits to realistic
hardware architectures using temporal planners, Quantum Science and
| Technology (2018)

n, . I [ 3] [ _ |
ot - KEC Booth, M Do, JC Beck, E Rieffel, D Venturelli, J Frank , Comparing and
nj integrating constraint programming and temporal planning for quantum
n, circuit compilation, ICAPS (2018)
D [
n, I I I Bryan O'Gorman, William J. Huggins, Eleanor G. Rieffel, K. Birgitta Whaley, Generalized
] - | swap networks for near-term quantum computing, arXiv:1905.05118

12345678 91011121314151617 18 192021 22232425 26 27 28 29 30 31 32 33 34 35
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Evaluating algorithm performance

Physics-inspired classical algorithms Evaluation criteria

State-of-the-art classical algs.
- Open-boundary Quantum Monte Carlo (QMC) [1]
- Population Annealing [2]

- Isoenergetic Cluster Method [3]
- Hybrid Cluster Method [4]

- Super-spin [5]

Analytically proven guarantees:
* Provable quantum speed-up (Grover)
* Strong quantum speed-up (Shor)

paJojre] AjSuisea.u|

Numerical evaluation:
Limited quantum speed-up
— Compared with current best classical

Collaboration with Katzgraber’s group at TAMU approach
e Limited Non-tailored quantum speed-up
Unified Framework for Optimization (UFO) — Current best generic classical alg. not

tailored to a particular problem
Limited Tailored quantum speed-up

[1] Z. Jiang, V. Smelyanskiy, S. Boixo & H. Neven, Path-Integral Quantum Monte
Carlo with Open-Boundary Conditions, arXiv:1708.07117, 2017

[2] W. Wang, J. Machta & , Population annealing: Theory and - Current beSt CIaSSicaI alg'l epriCitly tailored
application in spin glasses, PRA (2015) to problem at hand
[3] , Efficient cluster algorithm for spin

glasses in any space dimension, PRL (2015) Mandra. Zhu. Want. Perd Ortiz. Kat ber. St th d
[4] D. Venturelli, S. Mandra, S. Knysh, B. 0’Gorman, R. Biswas & V. Smelyanskiy, andra, £, Yan, Fercomo-L iz, falzgraber, Sirengins anc.
Quantum optimization of fully connected spin glasses, PRX (2015) weaknesses of weak-strong cluster problems: A detailed overview of
state-of-the-art classical heuristics vs quantum approaches. PRA

[5] S. Mandra, , A. Perdomo-Ortiz, , Strengths (2016)

and weaknesses of weak-strong cluster problems: A detailed overview of state-
of-the-art classical heuristics versus quantum approaches, PRA (2016)
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Classical HPC simulation of quantum circuits
Advanced the state-of-the-art Bristlecone-72

- can simulate larger quantum circuits than
any previous approach

- judicious use of cuts within a tensor
network contraction

- HPC memory tricks and trade-offs
Computed exact amplitudes for 72 qubit

Bristlecone random circuit, depth 1+32+1
Largest computation run on NASA HPC clusters [+ 2 5 :

- can flexibly incorporate fidelity goal

- 60-qubit subgraph, depth 1+32+1 IR T

- 116,611 processes on 13,059 nodes, peak SRR R
of 20 PFLOPS, 64% of max i ™eal DR Cea™aa pigls

- across Pleiades, Electra, Hyperwall AR B X TR L R Y

Applications
Villalonga et al., A flexible high-performance simulator
- quantum supremacy experiments for the verification and benchmarking of quantum
circuits implemented on real hardware.
- benchmark emerging quantum hardware NPJ Quantum Information 5, 1-16

Villalonga et al., Establishing the Quantum Supremacy
- empirica"y explore quantum a|gorithms Frontier with a 281 Pflop/s Simulation, arXiv:1905.00444
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How do you verify a
computation that no
other hardware can do’?
- check smaller version

- check pieces
- check variants that are

. Example random quantum circuit. Every cycle includes
a layer of single- and two-qubit gates. The single-qubit

= gates are chosen randomly from a set of three gates. The
= Ssequence of two-qubit gates follow a tiling pattern,

8= coupling each qubit sequentially to its four neighbors.

Slmpler to SImUIate 24 Oct 2019 ClaSSicallifilejifjaillf 7777777777777777777 PR S jlrjrfrrjaj:{?siir?ti 7777777 l
| 00000 | ' 90000 !

 Entering an era of g :g:::: DIQ;GLI@’TLI §§§§Dl~;olﬂrlarlﬁr
unprecedented ways to Re, WY =Rl RIS NIV
explore quantum g e
algorithms. P e

» Era of quantum NI 1w
heuristics. - l

* These explorations will ~ § | ot Xl il o
broaden the known % %% %% Rl R—— |
application of quantum RS 3G X s

-3
10 10 15 20 25 30 35 40 45 50 55 12 14 16 18 20

Com putl ng . Number of qubits, n Number of cycles, m
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Networking quantum processors enables
larger quantum computations

Connecting classical and quantum
processors supports hybrid methods

Connecting limited capability quantum
devices to QCs enables delegated quantum
computing

Verifiable QC enables client to determine if
desired quantum computation has been
performed

Means to benchmark prototype quantum
computing hardware

Security applications in the long term
Blind quantum computing enables client to

use QC without QC provider learning
anything about computation

Envision a heterogeneous landscape, with
a variety of quantum processors, with
differing strengths
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NASA Ames director Hans Mark brought
llliac IV to NASA Ames in 1972

llliac IV - first massively parallel computer
- 64 64-bit FPUs and a single CPU

- 50 MFLOP peak, fastest computer at
the time

Finding good problems and algorithms
was challenging

Questions at the time:

- How broad will the applications be of
massively parallel computing?

- Will computers ever be able to
compete with wind tunnels?
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Deep connection between fundamental physics and “ Quantum- '
computer science “ . enhanced y
. . 4
- How fast does nature let us compute? «>— applications ’ <
- Many open questions remain "'e 7. ; < .
YA ¢ =
4 _ 4
The next years will be even more exciting! QC programming
Novel classical

- Quantum hardware improvements will support yet
larger and more powerful computations

solvers

L\~
4 L4 > R
- Unprecedented opportunity to investigate quantum \"\'MI < e [!

algorithms and quantum mechanisms on a larger scale /@ Physics Insights
4
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Please talk with us about your most challenging  Simulation | Analytical
. tools ' methods
computational problems!
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NASA QuAIL Team

NASA Ames Research Center

Eleanor G. Rieffel, Stuart Hadfield, Tad Hogg, Salvatore Mandra, Jeffrey Marshall, Gianni Mossi, Bryan
O'Gorman, Eugeniu Plamadeala, Norm M. Tubman, Davide Venturelli, Walter Vinci, Zhihui Wang, Max
Wilson, Filip Wudarski, Rupak Biswas, From Ansétze to Z-gates: a NASA View of Quantum Computing,

arXiv:1905.02860

Rupak Biswas, Zhang Jiang, Kostya Kechezhi, Sergey Knysh, Salvatore Mandra, Bryan O'Gorman,
Alejandro Perdomo-Ortiz, Andre Petukhov, John Realpe-Gémez, Eleanor Rieffel, Davide Venturelli, Fedir
Vasko, Zhihui Wang, A NASA Perspective on Quantum Computing: Opportunities and Challenges,

Parallel Computing, Volume 64, May 2017, p. 81-98, arXiv:1704.04836



National Aeronautics and
Space Administration &
- 4

/ﬁ“ ; Discovery - Innovations ~ S

Tailored problems to
P O
0-0 5\ 5 enhancement

\ Hidden bottlenecks of
large-scale problems 4
Static and dynamical —
noise in qubits Optimal
/ parameter setting

-

Error suppression
techniques Annealing theory of

embedded problems

> 4

algorthms for
robust network

design
diagnosis p

Device calibration
show quantum .
techniques Quantum

New embedding

Fault detection and

APPLICATION PROBLEMS

olutions

algorithm

strategies design

\

Resource reduction and
estimation for quantum
algorithms

Future quantum
processor design

elements
T-—_—.

NASA Quantum Research Approach

Hybrid quantum-
classical approaches

Insights into and
intuitions for
guantum heuristics

-
Compiling quantum
algorithms to realistic
hardware

Phase transitions in )
. .. Machine .
application problems ) Quantum algorithms

Learning and .
cgr v for planning and
Artificial .
Quantum ) scheduling
Intelligence

Quantum algorithms

roblems

for material science
simulations
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